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The study of a chemical aggregate (molecule or molecular fragment) must proceed through the choice 
of a qualifying model. The structure of the aggregate (the way in which its model is constructed) can 
be defined and assigned through a system of levels, first topological and then geometric in nature. 
Different kinds of structural regularity may be defined, and their related properties studied, first 
considering one-row aggregates, and then multi-row aggregates which are considered as appro- 
priate combinations of one-row aggregates. The complete topological and geometric systematics of 
regular one-row aggregates is derived. At geometric levels, complete regularity mathematically implies 
(in one-row aggregates) a generalized helical structure, which may be more expressively analysed in 
five (proper, limiting and degenerate) forms of their 'monoatomic equivalent' reticular skeleton. It 
is also shown how the choice of a more detailed equivalent model may lead to a wider shape classifi- 
cation. Examples of reticular skeletons of regular two and three-row unit aggregates are also given. 
Criteria are discussed in order to attribute a 'dimensionality' to the aggregates under study, and also 
in relation to their shape characterization. 

GENERAL CONSIDERATIONS 

Methodology and aim of the research 

Both the main subjects mentioned in the title (descrip- 
tion and design) require: 

(a) a sharp definition of the object of interest, i.e. of the 
chemical aggregate (molecule or molecular fragment); 

(b) since this is a complex, invisible object, a proper de- 
finition of the model by which we intend usefully to repre- 
sent it, which itself becomes the object under study; 

(c) the method by which the structure of the object (the 
model) can be assigned in all its features; 

(d) definitions relating to structure regularity; 
(e) the individualization, in a rational way, of all the pos- 

sible forms the object (model) with the structure regularity 
under consideration can assume. 

A method of studying this last point may be a conve- 
nient morphogenesis which can also be considered as the 
model for a synthesis operation. Such a model evidences 
the essential elements which have to be considered in a 
shape-based design. 

The subject will here be dealt with from the point of 
view of the topology and geometry of the object, that is of 
those fundamental structural aspects which may be called 
'compositive' and 'connective' and possibly 'figurative'. 

* General lecture read by F. Danusso at the 3rd Italian Meeting of 
Macromolecular Science, Milan, October 17-19, 1977 

t Present address: lstituto di Chimica Industriale del Politecnico, 
Sez. Chimica Macromolecolare e Materiali, Piazza Leonardo da Vinci 
32, 20133 Milan, Italy 

These are distinct from those of the 'attributive' structure, 
which, depending on the problems, will also include chemi- 
cal, physical or biological features, associated with or sup- 
ported by the topological and geometrical structure. 

It seemed advisable to go back to primitive concepts, and 
then to re-establish them in a mathematical framework in a 
language which is hoped to be more straightforward, and of 
a higher degree of intuition and generality. This particularly 
refers to the balance between geometric and topologic means: 
the latter are largely used by chemists on intuitive grounds; 
however, their relationship with the former means, with 
which they should constitute a concerted approach to 
structure is not always clearly recognized. 

It appears reasonable that such a methodology should 
lead to some valuable assistance along many lines of present 
macromolecular research, such as: 

(i) to reach a better systematization of the large number 
of results so far obtained by macromolecular chemists; 

(ii) to supply macromolecular chemists with more effec- 
tive means for planning and forecasting in their work; 

(iii) in particular, to offer more appropriate methodologi- 
cal means of designing the synthesis of two and three- 
dimensional macromolecules with a regular structure; 

(iv) to help in the introduction of simulation of the more 
specifically chemical aspects of macromolecular research; 

(v) to assist in dealing with the problems which arise in 
the study of relationships between the shape of macromole- 
cules and their chemical, physical or biological functions. 

In this paper a brief and not exhaustive idea will be 
given of the essential problems which arise in the deepening 
of the subject, as well as of the main results so far 
obtainedL 
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Figure 1 Genealogic relationship between elements usually con- 
sidered and chemical aggregates 

Chemical aggregates 
The object under study is the chemical aggregate. This 

is the result of a chemical aggregation of elements. Every 
element is connected to another by at least a chain of ele- 
ments and chemical bonds, and, in particular, is chemically 
juxta-connected to a number of  adjacent elements equal to 
what is defined as its connection valency. 

A chemical aggregate is stoichiometrically closed (mole- 
cule) when all the chemical bonds are established between 
its own elements and stoichiometrically open (molecular 
fragment) when some of the chemical bonds are established 
with foreign elements (or aggregates). 

The elements usually considered by chemists are atoms 
but in some instances usefully chosen molecular fragments 
are considered (each as a whole) as primitive components, 
which may be given the name 'element units'. 

Aggregates may thus be conceived as being made up 
either of atoms or of element units (or possibly by both of 
these kinds of elements, though atoms can be considered as 
a particular case of element units). 

In practice, depending on the problems, chemists deal with 
any of the following kinds of chemical aggregate: 

(A) a unit of atoms (i.e. a fragment no longer considered 
as an element unit, but as a stoichiometrically-open aggre- 
gate of atoms); 

(B) a super-unit (i.e. a larger fragment, stoichiometrically 
open, deriving from aggregation of two or more element 
units); 

(C) a molecule of units (i.e. a stoichiometrically-closed 
aggregate of element units); 

(D) a molecule of atoms (i.e. a stoichiometrically-closed 
aggregate of atoms). 

The genealogical relationship between these elements 
and aggregates is represented in Figure 1, with a symbolic 
indication of their constitution. Clearly, the most detailed 
structural description is given by aggregates of atoms. 

Models of  aggregates 
Any reasoning concerning chemical aggregate structure 

must proceed through the conception and consideration of 
a model, and is widely qualified by the choice of the kind of 
this model. 

The most commonly used model of a chemical aggregate 

is the graphic model, which identifies elements with points 
and chemical or connective bonds between elements with 
segments. Another extreme model sometimes used is the 
solid model, which envisages the aggregate in a material way, 
with elements having their own volume (for example, the 
scale models constructed from laboratory kits). Depending 
on the problems, a wide variety of intermediate models may 
also be used, as illustrated below. These can be of mathe- 
matical or geometrical conception, or may be thought of as 
retaining some of the material character of the aggregate. 

In graphic or solid models, at levels of topologic descrip- 
tion, atoms and element units can be represented in the same 
way, for example, as points or small spheres, with the bonds 
converging to their centres. At levels of geometric descrip- 
tion, however, atoms can again be represented in this way, 
whereas element units require a more complex representa- 
tion, since the bonds of every unit do not converge in general 
towards a single centre. For this level of complexity, the 
element units have scarcely been applied so far in geometric 
considerations, but prevailingly introduced as units of atoms. 

Equivalent models are more easily handled when dealing 
with aggregates of units: they substitute a simpler figure for 
each unit which retains some of the relevant features of the 
unit and is more fit for less detailed, but simpter, figurative 
considerations (for example, in the 'monoatomic equivalent' 
model each unit is replaced by a hypothetical single atom; in 
the 'biatomic equivalent' model by a suitable pair of hypo- 
thetical atoms, etc.). 

Structure o f  a chemical aggregate 
The structure of an aggregate is the way in which it, or 

rather its model, is made. Structure assignment (analysis, 
description, synthesis, etc.) in chemical practice is usually 
referred to connective structure. It is actually done by pro- 
ceeding in insight steps, or levels, topological at first, then 
geometric in nature; this is done by assigning values or 
specifications to structural variables, selected to describe the 
variety of figures the model can assume. 

In this way, the structure of a chemical aggregate identi- 
fies with a set of parametric specifications associated in an 
orderly manner, by levels, to part or all of the variables which 
among those describing the model chosen to represent the 
aggregate itself, directly or indirectly lead to information 
about compositive, topological or geometric features. 

A homogeneous system of levels with relating structural 
variables is illustrated in Table 1 for the graphic model of a 
molecule of atoms. The classification of the 2nd column is 
the customary one in modern chemistry. 

At any level, a level structure is assigned, which implies 
knowledge of the structure of the lower levels, and which 
leaves out the structure of the higher levels (which may be 
unknown). Clearly a complete knowledge of the connective 
structure is reached at the highest level (the conformational 
one). 

It is interesting to note that two aggregates have equal 
structure when they have equal corresponding structural 
parameters for the same model and the same set of structural 
variables. Such an equality may take place up to a certain 
level, and not at higher levels (isomerism). Generally, the 
structure equality of two aggregates has therefore to be 
stated, or assigned, with the specification of the level at 
which it occurs or is considered. 

It may also be interesting to point out that equality de- 
fined in this way means the most intuitive topological or 
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Table I Level assignment of a molecular structure (molecule 
of atoms; graphic model) 

Level qualification Level name Structural variables 

( Stoichiometric 
Composition 

>. 

-5 
CL 
O 
t- 

( Topologic-- 1 ) 

Kinds of atoms 
and their number 

Constitution 
Constitutional Pairs of juxta- 

connected atoms 
(Topologic-2) and kinds of bonds 

- -  Configuration 

¢ 
Labels ordering the 

Orientational juxta-connection set 
(Topologic--3) of each orientable 

atomic centre 

Steric 

(Geometric-1) 

Descriptors of the 
steric arrangement 
of the juxta-connec- 
tions around 
oriented atoms 

E ~ Metric Bond lengths and 
o / angles 
L9 (Geometric - 2  ) 

Conformational Internal rotation 
Conformation angles 

(Geometric-3) 

geometric superposability, which has different names and 
definitions in the mathematics*. 

STRUCTURE SYSTEMATICS OF REGULAR O N E - R O W  
AGGREGATES 

One-row aggregates 

The description and morphogenesis of  chemical aggregates 
with structure regularity will be carried out by studying first 
regular one-row aggregates, and then regular multirow aggre- 
gates. The latter can be generated through regular combina- 
tions of  the former, that is by proper wielding or partial merg- 
ing of more than one regular one-row aggregate in every unit. 

A one-row aggregatet is an aggregate whose structural 
features can be completely and orderly described with 
logical or topological reference to points arranged along a 
line, in such a way that any pair ofjuxta-connected elements 
of  the aggregate has a one-to-one correspondence with a pair 
of adjacent points on the line. 

Structure regularity 

Regularity is most generally taken to mean equality of  
parts and/or of  relations between parts. Structure regularity 

* At the topologicallevels such an equality essentially conforms to 
the concept of isomorphism. At the conformational level it corres- 
ponds to what is variably referred to as direct equality (elementary 
geometry), proper congruence (e.g. Weyl), compatible equality or 
congruence (e.g. Shubnikov), and direct isometry (e.g. Coxeter). 
This is different from what is named opposite equality (elementary 
geometry), improper congruence (e.g. Weyl), mirror equality (e.g. 
Shubnikov) and opposite isometry (e.g. Coxeter): such an equality 
frequently implies, in our view, a difference of structural parameters 
already at the configurational level 

t Frequently also called 'linear', or, if appropriate, 'branched' or 
'cyclic'. When open, it corresponds to a 'tree' of graph theory; when 
closed it results in a single cycle. In the case of a branched structure, 
every branch (side group or chain) has to be considered part of a single 
element along the row 

means structure equality of  parts and/or equality of  struc- 
tural relations between parts. 

For the aggregates of  interest in the present study the 
most important def'mitions will be reported in the following, 
bearing in mind that, holding the above equality to be referrec 
to structural levels, any type of  regularity will be understood 
as level regularity. 

An aggregate has composition regularity when it can be 
divided into an integer number of units of equal structure~. 

The following are symbolic examples of one-row aggre- 
gates with composition regularity (at the configurational 
level) 

(a) - A H A A H A A H A A H A A H A A H A -  
unit: - A H A -  (indifferent to orientation) 

(b) -AHTTHATHAAHTAHTAHT-  
unit: - A H T -  (orientable) 

(c) - A D A D A D ( I A ( I A A D -  
unit: - A D -  (orientable and with orientable elements) 

(d) - A Y A Y Y A Y A Y A A Y -  
i I I I I I 

unit: - A Y -  (orientable) 
/ 

An aggregate hasjuxta-connection regularity when it con- 
sists entirely of  units of  corresponding (or equal) structure, 
and is such that, for whatever pair ofjuxta-connected units, 
there is identical mode of  connection and mutual orienta- 
tion ('juxta-connection rule') of  the two units. 

Examples of  one-row aggregates with juxta-connection 
regularity (at the configurational level) are the following ones 
(superunits): 

(a) - A H A A H A A H A A H A A H A A H A -  unit: - A H A -  
(b) - A D A D A D A D A D A D -  unit: - A D -  
(c) - A Y A Y A Y A Y A Y A Y -  unit: - A Y -  

I I i I I I i 

(d) - A C A D A D A D A C A C -  units: - A C -  
and - A D - ,  for which a correspondence is established 
between - C -  and - D - .  

An aggregate has insertion regularity when it entirely con- 
sists of  units of  corresponding (or equal) structure, and is 
such that every unit has a same mode of  insertion in the 
aggregate ('insertion rule'), i.e. a same set of  connection and 
mutual orientation modes with its juxta-connected units, 
orderly considered. 

The following are examples of  one-row aggregates with 
insertion regularity (at the configurational level) 

(a) . . .  - A H A A H A A H A A H A A H A A H A - . . .  unit: - A H A  
( b ) . . .  - A H T A H T A H T A H T A H T A H T - . . .  { unit: - A H T  

•. - A H T T H A A H T T H A A H T T H A - . . ,  
( c ) . .  - A Y A Y A Y A Y A Y A Y - . . .  unit: - A Y -  

I t I ~ I i I 

( d ) . .  - A C 3 A A D ( I A A C G A -  . . .  units: - A C -  and 
- A D - ,  for which a correspondence is established 
between elements - C -  and - D - .  

An aggregate has complete regularity when both composi- 
tion and insertion regularity are present in it. 

From these definitions, properties of regular aggregates 
can be derived, as well as relations between regularities of 
different kinds. 

For example, in an unlimited (finite or infinite) one-row 
aggregate, when complete regularity is present, juxta- 

The dividing operation is here postulated as the splitting of bonds 
and not, as a rule, of elements. In the former case units result in a 
stoichiometrically proper aggregate (stoichiometrically proper unit); 
in the latter the unit is only a speculative improper aggregate 
(stoichiometrically improper unit). The bonds are in turn postulated 
as connective bonds: between two juxta-connected units only one 
'connective' bond is considered along the row, whatever the number 
of 'chemical' bonds 
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Figure 2 Relationship between regularities of different types in 
one-row aggregates. Scheme A, unlimited aggregates; Scheme B, 
limited aggregates, when juxta-connection unit is orientable (juxta- 
connection regularity can also take place in limiting form). Scheme 
A, limited aggregates, when juxta-connection unit is indifferent to 
orientation (juxta-connection regularity can also take place in limit- 
ing or degenerate form) 

connection regularity is also present, with a unit equal to 
once or twice that of the insertion regularity if this latter is 
orientable, and equal to the latter if it is indifferent to 
orientation. At the topological levels, when the units are 
indifferent to orientation, composition regularity implies 
also, with the same unit, both insertion and juxta-connection 
regularity. 

A limited (and then finite) regular one-row aggregate may 
have either insertion or juxta.connection regularity, or both, 
depending on the kind of units, their number and connec- 
tion pattern, With insertion regularity the aggregate con- 
sists of only two insertion units; for this reason complete 
regularity of a limited aggregate is more typically designated 
as binodal regularity. With insertion regularity, juxta- 
connection regularity may be present in a proper way, but 
also as a limiting (only two units) or degenerate case (only 
one limiting unit). 

Examples (atthe configurational level) of limited one- 
row aggregates (all, but one, superunits): 

(i) -AHAAHAAHAAHAAHAAHA- 
6 juxta-connected units -AHA- ;  2 insertion units 
-AHAAHAAHA- (in general: even number of in- 
different juxta-connected units; 2 insertion units) 

(ii) -AHAAHAAHA- 
3 juxta-connected units -AHA- ;  2 improper inser- 
tion units -AHAA(H)I/2- (in general: odd number 
of intrinsically indifferent juxta-connected units; 2 
improper insertion units) 

(iii) -AHAHAH- 
3 orientable juxta-connected units - A H - ;  no inser- 
tion regularity (in general: n orientable juxta- 
connected units; no insertion regularity) 

(iv) -AHHAAHHAAHHA- 
3 juxta-connected units -AHHA-;  2 insertion units 
-AHHAAH- 

(v) -AHAAHA-: 2-juxta-connected units - A H A -  
(limiting case); 2 insertion units -AHA- ;  
-AHAH-:  2 juxta-connected units - A H -  (limiting 
case); no insertion regularity; 
-AHHA-;  MA-AM (molecular aggregate) degenerate 
juxta-connection regularity; 2 insertion units. 

Other general properties are as follows: an aggregate with 
complete regularity is such that a hypothetical observer, 
first placed on a particular insertion unit and then, trans- 
ferred to another, cannot distinguish between the two posi- 
tions in the aggregate; in other words, the (topologic or geo- 
metric) dispositions of the insertion units in the aggregate 
are all equivalent (a primitive and generalized expression of 
symmetry). 

In particular, complete one-row regularity can be defined 
or recognized as parameter repeat regularity: a hypothetical 
observer, who proceeds along the unlimited row of the 
aggregate and records values and specifications for all the 
structural parameters (in the order the corresponding struc- 
tural features are met and analysed according to a level 
system), finds a periodic sequence of values and specifica- 
tions. The period sequence is the parameter repeat unit. 

In unlimited aggregates this parametric unit, mathematical 
in nature, physically corresponds to the juxta-connection 
unit, and retains all information about the structure of this 
latter unit and its juxta-connection rule. For binodal regu- 
larity, parameter repeat cannot be present in the normal 
way since the aggregate is limited. However, it can be con- 
sidered present by using an appropriate convention- an 
unlimited pendular running along the limited row of the 
aggregate, within its two ends. In this way, when insertion 
regularity is present, the parameter repeat unit corresponds 
to a pair of insertion units (that is, to the limiting case of 
the whole aggregate); when insertion regularity is not pre- 
sent, the parameter repeat unit corresponds to the double of 
the entire aggregate, so that the parameter repeat becomes 
a degenerate case of regularity. 

In unlimited aggregates, when the parameter repeat re- 
cording is the same in both of the opposite running direc- 
tions along the row, the aggregate is indifferent to orientation, 
whereas if the two recordings are different, the aggregate is 
orientable. In limited aggregates, binodal regularity makes 
the aggregate indifferent to orientation in any case. 

The genealogic relationship between regularities of diffe- 
rent type is summarized in Figure 2. 

Possible one-row aggregates with parameter repeat regularity: 
topologic systematics 

Using the definitions and properties of regular structures, 
it is easy to state precisely what types of parameter repeat 
regular, one-row aggregates are possible at the highest topolo- 
gical level. 

The possible parameter repeat units can be distinguished 
into orientatable and indifferent to orientation. The indif- 
ferent ones can in turn be distinguished into: (a) intrinsically 
indifferent, and (b) indifferent as the result of coupling 
between two insertion units with opposite orientation. 
Symbolic examples of possible units are: 

(a) orientable: - A H - ,  -AHT- ,  - B - ,  -ABC- ,  -ABA-,  
-AY<,M-;  

(b) intrinsically indifferent: - A - ,  - AHA- ;  
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Molecular one-row aggregates 

Finite unlimited 

infinite unlimited 

• . . - - t  t i t ~ ~ I ~ . . -  

- " , - ! '~1- - " -  -'---"1 I - - "  ",,-- I'~1--"-- " - - I - - " "  

is necessary to define typical forms comprehensible in a 
finite classification. 

The figurative structure of an aggregate can be generally 
thought of as deriving from the combination of two elements: 
(a) the 'skeleton', and (b) the 'substance' which covers the 
skeleton. The 'substance' can realize an infmite set of 
possibilities, but the 'skeleton', if regular, can be classified 
in a relatively small number of fundamental forms. This 
number depends on the way in which the skeleton is de- 
fined; that is, on the simplicity of the model chosen to rep- 
resent the aggregate schematically. 

A reticular skeleton is defined as the geometric figure ob- 
tained when in an aggregate with complete regularity, ob- 
served at the conformational level and with all its structural 
variables settled at parametric values or specifications, we 
can substitute a simpler figure for each unit and for each row 
crossing the unit a line of a defined geometric form (directrix 
line). Usually, it is this line (or a system of these lines) that 
allows one to define the shape of the aggregate. 

Limited 
(binodol) 

Figure 3 Topological classification of the possible molecular one- 
row aggregates with parameter repeat regularity (configurational 
lave I ) 

(c) indifferent because of opposite coupling; - A H H A - ,  
-AD(1A- .  

Depending on the type of unit and its connection pat- 
tern, corresponding whole aggregates are accordingly orien- 
table or indifferent to orientation. 

All the parameter repeat regular aggregates should be un- 
limited. For one-row aggregates this condition can be reached 
in either of two ways: with (finite) cyclic aggregates or with 
infinite open aggregates. 

The binodal aggregates are physically finite and limited. 
However, in a mathematical sense, they can also be seen as 
unlimited through the already mentioned expedient of pen- 
dular running on the finite row. This is theoretically pos- 
sible, for example in the limiting situation of the 'squashing' 
of an unlimited running on a cyclic aggregate. If  this view is 
accepted, in a complete pendular period two parameter re- 
peat units are generally encountered, and the aggregate can 
be put in correspondence with a finite (double) row bearing 
two parameter repeat units at its ends, in agreement with 
the most relevant feature of  binodal regularity. 

The whole topology for molecular aggregates is schema- 
tically illustrated in Figure 3 (the degenerate case of binodal 
regularity has been omitted). This same topology can be ex- 
tended to stoichiometrically open aggregates, i.e. superunits, 
when these have only half-bonds which are lateral with res- 
pect to their row. For superunits which also have end half- 
bonds, and are therefore limited, only binodal regularity is 
possible, 

Study at geometric levels - reticular skeleton 

The geometry of an aggregate depends on all its struc- 
tural detail and offers an infinite variety of possibilities. If  
one wishes to describe all the possibilities in a simple way, it 

Possible shapes o f  molecular one-row aggregates with 
parameter repeat regularity - monoatomic reticular skeleton 

Particularly simple and expressive is the reticular skeleton 
obtained by a monoatomic equivalent model, that is by sub- 
stituting in general an atom (point) for every unit and a pair 
of bonds (segments) for each row crossing the unit. Thus 
every row assumes the shape of a polygonal line, whose 
vertices represent the units on the row, and the sides the con- 
nection bonds between units*. The substitutive atoms 
(vertices) can be placed on a point arbitrarily chosen on every 
unit but in corresponding position in all the units. 

It can be demonstrated in a completely general mathe- 
matical manner that when in a one-row aggregate complete 
regularity is present, corresponding points of the parameter 
repeat units lie equidistant along the same cylindric circular 
helix. Therefore, the monoatomic reticular skeleton of the 
same aggregate will be in general a helical polygonal line, in- 
scribed in a cylindric circular helix passing through its 
vertices. 

The corresponding shape has helical appearance only in 
the reticular skeleton of a part of the infinite unlimited 
aggregates. In other one-row aggregates such a skeleton as- 
sumes shapes mathematically derivable from the helical one, 
but representing particular, limiting or degenerate cases of 
the cylindrical circular helix. These shapes can be classified 
in four other expressive forms. 

The five possible monoatomic forms are represented in 
Figure 4, with an indication of a morphogenesis of  projec- 
tive type as an example of a rational derivation of every 
form from the fundamental, with proper helical shape. 
Among these, the cyclic and binodal ones can also be recog- 
nized, as already foreseen in the topological systematics. 

In the same Figure 4 a sixth form is indicated (single 
point), which is doubly degenerate, and corresponds to the 
very particular case of degeneration of parameter repeat 
regularity (for example, degeneracy of the binodal case). 

Relationship between juxta-conneetion parameters and 
shape- shape generator 

For the design of a completely regular aggregate two ele- 
ments have to be established: (a)the structure of the units and 
(b) their mode ofjuxta-connection. All the parameters relat- 

* If appropriate, in this model the polygonal line representing the 
row can be substituted by another expressive directrix line (helix, 
circle, etc.) 
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Figure 4 Five forms o f  ' m o n o a t o m i c '  ret icu lar  skeletons of para- 
meter  repeat  regular one- row aggregates ( con fo rma t i ona l  level;  cor- 
responding shape generators are ind icated)  

ing to both these elements are contained in the parameter 
repeat unit; when this unit is singled out, we have informa- 
tion concerning the whole molecular structure and a possible 
means for its geometric synthesis. The latter is based on a 
repetitive and cumulative juxta-connection operation which 
simulates polymerization. The corresponding 'operator '  is 
also the one which, when applied to a given unit, determines 
the shape of the aggregate, i.e. its morphogenesis*. 

A practical way of  reasoning may be the following: the 
parameter repeat unit can be represented on the graphic 
model of  a unit of  atoms at the conformational level, by a 
matrix which collects, in an orderly manner, the values of  
the parametric triads, li, Oi and 4~i (bond lengths, supple- 
mentary bond angles and internal rotation angles) relating to 
all the atoms met with along the row. From these para- 
meters, the passage to the monoatomic reticular skeleton can 
be made by calculating the corresponding matrix of  the para- 
meter repeat unit of  the monoatomic equivalent model, con- 
sisting of  a single triad L, ®, q~ (the unit reduces to a single 
substitutive atom). In general: 

ll l 2 l 3 . . .  In L 
O1 0 2 0 3 . . . .  On ------> 0 
q~l q~2 ~b 3 . . .  q5 n qb 

From this triad, the non-dimensional parameters (9 and q~ 
can be selected, generally characterizing a shape generator, 
y(O;qs), such that, depending on the values or ranges of  

* The relative simplicity of these considerations reflects the parti- 
cularly low 'information content' of completely regular aggregates; 
the synthesis 'message' of these is simpler than that of any other aggre- 
gate of comparable size 

values of  ® and ~,  the monoatomic reticular skeleton as- 
sumes the shape of  any of  the five fundamental forms. To 
each of  them a specific generator can be made to correspond 
according to the following Table : 

Helical po l ygona l  l ine a 0 = 3 " [ ® ~  0, ~r; • #=0w] * 
Planar zig-zag {'o = 3`[® 4= 0, lr; ~ = ~r] 
St ra ight  l ine r0  = 3` [®= O; d~ indef . ]  
Planar p o l y g o n  P0 = 3,[® = 27r/k; • = O] (k = integer > 2) 
Dumb-be l l  /30 = 3 , [®= ~r; ~ indef . ]  

* The helical polygonal line is rational when: 

1 m~r 
arc cos-- (cos® + cos • + c o s  ® cos • - I) = - -  

2 n 

(m,n = integers) and otherwise is irrational 

Orthogonal biatomic reticular skeleton 

As an example of  a more detailed skeleton model, we will 
mention here the orthogonal biatomic equivalent model, 
according to which every parameter repeat unit is substituted 
by one consisting of  two hypothetical biconnected atoms, 
both having bond angles of  7r/2 and two end bonds colinear 
with the end bonds of  the real unit. As shown in Figure 5 
(top for a unit, and bot tom for two juxta-connected units), 
the substitutive unit can be constructed by prolonging the 
first and the last bond of  the real unit and by intersecting 
the two segments (in general skew) with a third one, ortho- 
gonal to both the former, which represents the shortest 
distance between them as well as the bond between the two 
hypothetical atoms (placed on the two intersection points). 

In the same Figure 5 four parameters are indicated, suf- 
ficient to characterize the model unit completely, and 
which can be calculated from the real values*: 

* It is to note that there are particular conditions in which A and 
~II are indeterminate. The enunciation of the model in these cases 
provides conventions which keep these parameters determinate, 
unless they happen to be indefinite 1 

(2) a 

\ , ( I ) . / " "  . \®~t b 

D iiT  / 

/ ', i ~n) 
/ 

I 

Figure 5 'Orthogona{ biatomic' equiva{ent mode{ of one-row 
aggregates. (a) construction of the orthogonal biatomic equivalent 
unit ({--{ l) from the tea{ unit (1--2--3--4--5); (b) parameters A, D, 
~{, ~{{ characterizing structure and juxta-connection of two 
orthogona{ biatomic equiva{ent units along the row 
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A 
> D 

O[ 

~II 

From this tetrad, three non-dimensional parameters can 
be selected, characterizing the shape generator: 

7(D/A; (I)i; (I)ii) 

Table 2 Shape generators of reticular skeletons of completely 
regular one-row aggregates according to the 'orthogonal biatomic' 
equivalent model 

Shape 
generators D/A ~ I ~ II 

o o  

O l  

o 2  

0 3  

~'0 

P0 

0 #0, n 
0 #0, n 

#=0 4:0, n 
4:0 / 4:0, n 

( 0 

0 n 
0 7r 

[ 4=0, n 4=0 / 
7T 

s o  [ n 0 

0 0 

27r 
f l = 0 ; f 2  = - - ( k >  2) 

k 
4:0 n 

0 Indefinite 
0 0 

4:0 0 

0 Indefinite 

4:0, 
o 

#=0, 7r 
0 

~O,~r 

4=0, 7r 
0 

~0, n 
1T 

o 

2~ 
- -  (k > 2) 
k 
21r 

k 
7T 

0 
0 
o 

Pl 

P2 

rO 
"gl 
"r 2 

0o 

1 + cosq~ l l  D s i n ~  I 
f l  = - -  t- - -  - - ;  f 2 ( ( D i ,  ~ 1 1 )  

s i n ~ l l  A 1 - - c o s ~  I 

1 
f2 = a r c o s  - -  ( c o s ~  I e c o s ~ l l  + c o s ~  I c o s ~ l l )  - 1  

2 

A classification of the possible orthogonal biatomic rec- 
ticular skeletons is presented in Table 2, as a list of  specific 
shape generators. In Figure 6 the corresponding shapes are 
illustrated• 

When D = 0, and q51 and qbii assume appropriate values, 
shape generators become those of the simpler monoatomic 
model (zero indexed); when D 4 : 0  more numerous and com- 
plex shapes can be derived• In these latter cases, binodal 
regularity has been omitted from classification, the biatomic 
model not being especially suited to evidence varieties in 
such a simple case of  regularity. 

REGULAR MULTIROW AGGREGATES 

The geometric synthesis of  completely regular aggregates 
whose units belong to more than one row, can be systemati- 
cally made by combining together two or more regular one- 
row aggregates on every unit in a given way. This operation 
has to be performed according to rules which preserve para- 
meter repeat along each of the combined rows. 

At the geometric levels, the possible varieties of  multirow 
reticular skeletons depend on the model chosen to describe 
the one-row components being made up. 

In Figure 7 examples are shown of monoatomic multirow 
reticular skeletons obtained by combination of 2 and 3 one- 
row components. The morphogenetic operator of  each of 
them is indicated as the 'product '  of  the generators of  the 
composing one-row reticular skeletons. 

The study of the complete systematics of multirow-unit 
aggregates is still in progress. 

DIMENSIONALITY AND SHAPE 

Chemists frequently speak of the dimensionality of  macro- 
molecules. Using the most usual models of  the graphic type, 
any molecule or macromolecule (or its skeleton) is an intrin- 
sically one-dimensional object. Nevertheless, if observed in 
three dimensions, it has a shape which depends on the way 
it develops in the space, and which cannot be intrinsically 
perceived. 

On the other hand, when the major proport ion of the 
atoms in a molecule may preferably be seen as lying essen- 

% cl I 0 2 °'3 ~0 

PO Pl P2 ~o 

~0 I ~2 

Figure 6 Possible 'orthogonal b iatomic '  reticular skeletons of  parameter repeat regular one-row aggregates (characterizing shape generators 
are listed in Table 2) 
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XoZo~o 
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13oPo i ~  b / 

"I;0"~ 0"[ 0 

Po Po !Bo~o Po 13o 
Figure 7 Examples of 'monoatomic' reticular skeletons of parameters repeat regular two and three-row aggregates (characterizing shape 
generators are simply indicated as the 'product' of the shape generators of the composing rows) 

tially along a possible directrix surface (instead of directrix 
lines), the molecular skeleton can be conceived as an intrinsi- 
cally two-dimensional object, having the shape of that surface 
observed in three dimensions. Thus, for example, regular 
molecules of generators roro or ~O/30 (Figure 7) can be con- 
sidered to be p!anar in shape; those of generators oor 0 or 
poro have cylindrical surface shape; those of po/30 or POPO 
have spherical surface shape. It is interesting to note that the 
model has been changed and the molecular skeleton is no 
longer conceived of as a graphic type, but is assimilated by 
definition with a surface (possibly embedding the 'graphic' 
skeleton). 

Similarly, if the density of matter may be seen as concen- 
trated in a solid region of the three-dimensional space, the 
molecule may appear as an intrinsically three-dimensional 
object. If finite in at least one of its three dimensions, it 
still has a shape; if infinitely developed in all its dimensions, 
it has no longer a shape (mathematically it does have a shape 
in four or more dimensions). Also in this respect a different 
model has been chosen, according to which a solid (finite or 
infinite) directrix figure is taken to represent the skeleton of 
the molecule. For example, three-dimensional molecules 
can be considered those whose skeletons arise from rOrO~ o 
(solid lamina), and rotor 0 (infinite, three-dimensional 
bodies). 

Similar considerations can be made if one chooses a model 
of the 'solid' type for any particular molecule. In this case 
the molecule is constantly conceived an intrinsically three- 
dimensional object. In this respect, regular figures arising 

from generators like r0, roro and POPO, may be respectively 
considered as rods, laminae, spherical shells and even pierced 
laminae or shells. 

In general, judgement on the shape may possibly include 
appreciation of the relative 'thickness' of the material con- 
stituting the object, such as thin rod (e.g. r0); thin ring 
(e.g. PO); thin ribbon (e.g. rof30); thick lamina (e.g. roro~o); 
thin or thick cylinder (e.g. ooro) thin or thick spherical shell; 
full cylinder or sphere; thin or thick cylindrical (or prismatic) 
network; thin or thick planar network, etc. 

The shapes discussed here, which are due to regular aggre- 
gates at the molecular level, are evident in nature: for 
example 'infinitely developed' three-dimensional bodies in 
diamond and other covalent crystals ('polymeric crystals'); 
thin laminae in mica and graphite; filaments, rods, hollow 
cylinders or spheres (polyhedra) in the housing or encapsu- 
lating structures of small living organisms (e.g. viruses, spores), 
or thick networks in their inorganic skeletons (e.g. in spores, 
in diatoms), etc.* 
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1 Topics and problems introduced in this paper will be the object 
of more detailed publication in this Journal 

* In the realm of  living organisms, regular structures appear to be es- 
pecially suited to the building up of  morphologic elements no t  directly 
concerned with living and genetic processes. This is clearly because 
of  their low ' information content ' ,  i.e. synthesis 'message' simplicity 
which results in an economic convenience as well as evolutionary 
soundness for living organisms 
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